Seeing if Cheating at Chess the Hard Way is Even Possible
With all the salacious stories about a cheating scandal rocking the world of championship-level chess, you’d think that we’d have delved into the story at least a bit here on Hackaday, especially given the story’s technical angle. But we haven’t, and it’s not because we’re squeamish about the details of the alleged cheat; rather, it’s because it’s just too easy to pun your way through a story like this. The lowest-hanging fruit isn’t always the sweetest.
But, we’ll give it a go, and play this one completely straight as we look at an experiment to determine if it’s even possible to cheat in the specific way that has been alleged. For the uninitiated, 19-year-old grandmaster [Hans Niemann] stands accused of cheating, possible through the use of a remote-controlled sex toy secreted in his rectum. The idea would be for an accomplice to use the toy, which contains a vibrating motor that’s controlled by an app either via Bluetooth or WiFi, to send suggested moves to [Niemann] based on a chess-playing AI’s analysis of the game.
Whether [Niemann] cheated or not is not the concern here, but rather [Captain Steel]’s experiment is just a first-pass look at whether it would be possible to cheat using the proposed technology — and most importantly, not get caught. He tried to replicate the scanning regime [Niemann] is now subject to at tournaments based on the allegations to see if a stand-in for the sex toy — a haptic motor attached to an ESP32 — would be detectable through various thicknesses of flesh. Rather than showing the same dedication to craft that [Niemann] is alleged to have shown, [Captain Steel] used slices of baloney as a stand-in for human flesh. He then tried scanning for RF emissions from the device through increasing layers of luncheon meat. We won’t spoil the results, other than to say that baloney turns out to actually be good for something.
We’ve covered another less-invasive method of cheating before, which given the results above is probably more likely to be discovered.